Topic: Did you know...
lilangel2's photo
Sun 04/20/08 10:06 AM
Did you know that there is actually a mili-second in time where an ex can cross over in either direction and allow another chapter of life to unfold...indifferent

hellkitten54's photo
Sun 04/20/08 10:06 AM
Yep, been there.

Single_Rob's photo
Sun 04/20/08 10:07 AM
A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and of its derivatives of various orders. Differential equations play a prominent role in engineering, physics, economics and other disciplines.

Visualization of airflow into a duct modelled using the Navier-Stokes equations, a set of partial differential equations.

Differential equations arise in many areas of science and technology; whenever a deterministic relationship involving some continuously changing quantities (modeled by functions) and their rates of change (expressed as derivatives) is known or postulated. This is well illustrated by classical mechanics, where the motion of a body is described by its position and velocity as the time varies. Newton's Laws allow one to relate the position, velocity, acceleration and various forces acting on the body and state this relation as a differential equation for the unknown position of the body as a function of time. In many cases, this differential equation may be solved explicitly, yielding the law of motion.

Differential equations are mathematically studied from several different perspectives, mostly concerned with their solutions, functions that make the equation hold true. Only the simplest differential equations admit solutions given by explicit formulas. Many properties of solutions of a given differential equation may be determined without finding their exact form. If a self-contained formula for the solution is not available, the solution may be numerically approximated using computers. The theory of dynamical systems puts emphasis on qualitative analysis of systems described by differential equations, while many numerical methods have been developed to determine solutions with a given degree of accuracy.

no photo
Sun 04/20/08 10:08 AM
noway huh

lilangel2's photo
Sun 04/20/08 10:08 AM

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and of its derivatives of various orders. Differential equations play a prominent role in engineering, physics, economics and other disciplines.

Visualization of airflow into a duct modelled using the Navier-Stokes equations, a set of partial differential equations.

Differential equations arise in many areas of science and technology; whenever a deterministic relationship involving some continuously changing quantities (modeled by functions) and their rates of change (expressed as derivatives) is known or postulated. This is well illustrated by classical mechanics, where the motion of a body is described by its position and velocity as the time varies. Newton's Laws allow one to relate the position, velocity, acceleration and various forces acting on the body and state this relation as a differential equation for the unknown position of the body as a function of time. In many cases, this differential equation may be solved explicitly, yielding the law of motion.

Differential equations are mathematically studied from several different perspectives, mostly concerned with their solutions, functions that make the equation hold true. Only the simplest differential equations admit solutions given by explicit formulas. Many properties of solutions of a given differential equation may be determined without finding their exact form. If a self-contained formula for the solution is not available, the solution may be numerically approximated using computers. The theory of dynamical systems puts emphasis on qualitative analysis of systems described by differential equations, while many numerical methods have been developed to determine solutions with a given degree of accuracy.


SHOW OFF! :tongue: bigsmile

no photo
Sun 04/20/08 10:09 AM
This is his reply for everything

lilangel2's photo
Sun 04/20/08 10:10 AM

This is his reply for everything


is no wonder he's single LOL laugh

Tommo's photo
Sun 04/20/08 10:12 AM

Did you know that there is actually a mili-second in time where an ex can cross over in either direction and allow another chapter of life to unfold...indifferent


Yeah, the ability to do complex mathematical equations is a natural inbuilt thing... The curse of being a manohwell

CleanBathroom's photo
Sun 04/20/08 10:14 AM
I, too, have cut and paste technology dude.

funny though:smile:

Single_Rob's photo
Sun 04/20/08 10:18 AM
Edited by Single_Rob on Sun 04/20/08 10:18 AM

I, too, have cut and paste technology dude.

funny though:smile:
someone feel a little insecure? I wasn't trying to seem intelligent for posting that, although I do have a chem e degree, and it was one of my least favorite classes. I just thought it fitting. Everyone loves to attempt to tear another down a notch, don't they?

wickedlluccy's photo
Sun 04/20/08 10:19 AM
Edited by wickedlluccy on Sun 04/20/08 10:20 AM


A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and of its derivatives of various orders. Differential equations play a prominent role in engineering, physics, economics and other disciplines.

Visualization of airflow into a duct modelled using the Navier-Stokes equations, a set of partial differential equations.

Differential equations arise in many areas of science and technology; whenever a deterministic relationship involving some continuously changing quantities (modeled by functions) and their rates of change (expressed as derivatives) is known or postulated. This is well illustrated by classical mechanics, where the motion of a body is described by its position and velocity as the time varies. Newton's Laws allow one to relate the position, velocity, acceleration and various forces acting on the body and state this relation as a differential equation for the unknown position of the body as a function of time. In many cases, this differential equation may be solved explicitly, yielding the law of motion.

Differential equations are mathematically studied from several different perspectives, mostly concerned with their solutions, functions that make the equation hold true. Only the simplest differential equations admit solutions given by explicit formulas. Many properties of solutions of a given differential equation may be determined without finding their exact form. If a self-contained formula for the solution is not available, the solution may be numerically approximated using computers. The theory of dynamical systems puts emphasis on qualitative analysis of systems described by differential equations, while many numerical methods have been developed to determine solutions with a given degree of accuracy.


SHOW OFF! :tongue: bigsmile




laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh ...you sound like the scarecrow after the wizard gave him a brain, so to speak...laugh laugh laugh


:heart:~w~:heart:


...also what "Johnathan Livingston Seagull " was about.....

bastet126's photo
Sun 04/20/08 10:21 AM

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and of its derivatives of various orders. Differential equations play a prominent role in engineering, physics, economics and other disciplines.

Visualization of airflow into a duct modelled using the Navier-Stokes equations, a set of partial differential equations.

Differential equations arise in many areas of science and technology; whenever a deterministic relationship involving some continuously changing quantities (modeled by functions) and their rates of change (expressed as derivatives) is known or postulated. This is well illustrated by classical mechanics, where the motion of a body is described by its position and velocity as the time varies. Newton's Laws allow one to relate the position, velocity, acceleration and various forces acting on the body and state this relation as a differential equation for the unknown position of the body as a function of time. In many cases, this differential equation may be solved explicitly, yielding the law of motion.

Differential equations are mathematically studied from several different perspectives, mostly concerned with their solutions, functions that make the equation hold true. Only the simplest differential equations admit solutions given by explicit formulas. Many properties of solutions of a given differential equation may be determined without finding their exact form. If a self-contained formula for the solution is not available, the solution may be numerically approximated using computers. The theory of dynamical systems puts emphasis on qualitative analysis of systems described by differential equations, while many numerical methods have been developed to determine solutions with a given degree of accuracy.


good looking and mad theory skills too flowerforyou :wink:

Single_Rob's photo
Sun 04/20/08 10:21 AM



A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and of its derivatives of various orders. Differential equations play a prominent role in engineering, physics, economics and other disciplines.

Visualization of airflow into a duct modelled using the Navier-Stokes equations, a set of partial differential equations.

Differential equations arise in many areas of science and technology; whenever a deterministic relationship involving some continuously changing quantities (modeled by functions) and their rates of change (expressed as derivatives) is known or postulated. This is well illustrated by classical mechanics, where the motion of a body is described by its position and velocity as the time varies. Newton's Laws allow one to relate the position, velocity, acceleration and various forces acting on the body and state this relation as a differential equation for the unknown position of the body as a function of time. In many cases, this differential equation may be solved explicitly, yielding the law of motion.

Differential equations are mathematically studied from several different perspectives, mostly concerned with their solutions, functions that make the equation hold true. Only the simplest differential equations admit solutions given by explicit formulas. Many properties of solutions of a given differential equation may be determined without finding their exact form. If a self-contained formula for the solution is not available, the solution may be numerically approximated using computers. The theory of dynamical systems puts emphasis on qualitative analysis of systems described by differential equations, while many numerical methods have been developed to determine solutions with a given degree of accuracy.


SHOW OFF! :tongue: bigsmile




laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh laugh ...you sound like the scarecrow after the wizard gave him a brain, so to speak...laugh laugh laugh


:heart:~w~:heart:


...also what "Johnathan Livingston Seagull " was about.....
you give me too much credit. It is after all just cut and paste technology drinker drinker

whispertoascream's photo
Sun 04/20/08 10:23 AM

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and of its derivatives of various orders. Differential equations play a prominent role in engineering, physics, economics and other disciplines.

Visualization of airflow into a duct modelled using the Navier-Stokes equations, a set of partial differential equations.

Differential equations arise in many areas of science and technology; whenever a deterministic relationship involving some continuously changing quantities (modeled by functions) and their rates of change (expressed as derivatives) is known or postulated. This is well illustrated by classical mechanics, where the motion of a body is described by its position and velocity as the time varies. Newton's Laws allow one to relate the position, velocity, acceleration and various forces acting on the body and state this relation as a differential equation for the unknown position of the body as a function of time. In many cases, this differential equation may be solved explicitly, yielding the law of motion.

Differential equations are mathematically studied from several different perspectives, mostly concerned with their solutions, functions that make the equation hold true. Only the simplest differential equations admit solutions given by explicit formulas. Many properties of solutions of a given differential equation may be determined without finding their exact form. If a self-contained formula for the solution is not available, the solution may be numerically approximated using computers. The theory of dynamical systems puts emphasis on qualitative analysis of systems described by differential equations, while many numerical methods have been developed to determine solutions with a given degree of accuracy.


WOW brains and looks! I am liking!flowerforyou

whispertoascream's photo
Sun 04/20/08 10:23 AM
Edited by whispertoascream on Sun 04/20/08 10:23 AM

Single_Rob's photo
Sun 04/20/08 10:24 AM


A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and of its derivatives of various orders. Differential equations play a prominent role in engineering, physics, economics and other disciplines.

Visualization of airflow into a duct modelled using the Navier-Stokes equations, a set of partial differential equations.

Differential equations arise in many areas of science and technology; whenever a deterministic relationship involving some continuously changing quantities (modeled by functions) and their rates of change (expressed as derivatives) is known or postulated. This is well illustrated by classical mechanics, where the motion of a body is described by its position and velocity as the time varies. Newton's Laws allow one to relate the position, velocity, acceleration and various forces acting on the body and state this relation as a differential equation for the unknown position of the body as a function of time. In many cases, this differential equation may be solved explicitly, yielding the law of motion.

Differential equations are mathematically studied from several different perspectives, mostly concerned with their solutions, functions that make the equation hold true. Only the simplest differential equations admit solutions given by explicit formulas. Many properties of solutions of a given differential equation may be determined without finding their exact form. If a self-contained formula for the solution is not available, the solution may be numerically approximated using computers. The theory of dynamical systems puts emphasis on qualitative analysis of systems described by differential equations, while many numerical methods have been developed to determine solutions with a given degree of accuracy.


WOW brains and looks! I am liking!flowerforyou
aww smooched

uk1971's photo
Sun 04/20/08 10:26 AM
Y? bigsmile :tongue: